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Telescope Array(TA) Experiment
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n The largest detector in northern 
hemisphere : ~ 700 km2

n Utah desert, US
n Hybrid detector using SDs and 

FDs
n Full operation in Mar 2008

Back Rock Mesa
(BRM)

Middle Drum
(MD) 507 Surface Detectors

Long Ridge
(LR)

PMT

16×16
PMTs

38 Fluorescence Detectors



Mass Composition Measurements
n Xmax depends on the mass composition of 

primary cosmic ray.
n 100 g/cm2 difference between proton 

and iron primaries.
n A limited field of view for FDs leads to 

a bias on observed Xmax.
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Antoine Letessier Selvon (CNRS/UPMC) Auger highlights ICRC 2013 Rio de Janeiro

MASS COMPOSITION I
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Kuempel (669), 
Ahn (690), 
Garcia-Gamez (694), 
Pieroni (697), 
de Souza (751), 
Hanlon (964)

<Xmax> and σ(Xmax) data

Extensive cross checks 
and verifications
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TA: Estimate the bias from MC 
simulations, and compare observed values.

Auger: Bias free 
measurement by a 
fiducial volume cut. 
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Overview of this work
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n We analyze newly constructed FDs which are 
BRM and LR stations in monocular mode.
n Larger statistics than Stereo or Hybrid analysis.
n Broad energy range.
n Poorer geometrical resolution.

n To study the effect of fiducial volume cuts, we 
adopt tight cuts to avoid reconstruction bias and 
achieve reasonable resolutions on Xmax in 
monocular mode.



Geometry Reconstruction
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Profile Reconstruction
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Signal at camera
Shower 
simulation based 
on G.H.Function

Reconstructed  
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Repeatedly simulate shower images with 
changing longitudinal development parameters 
of Gaisser-Hilllas (G.H.) function.

Inverse Monte Carlo



Quality Cuts
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Field of view

Xstart

FD

Shower

Xend

ψ 

Tight quality cuts are adopted to achieve a reasonable 
resolution and smaller reconstruction bias on Xmax.

 ψ < 90 degree.
 Impact parameter(Rp) > 5 km
 Xstart < 700 g/cm2

 Xend > 900 g/cm2

Use identical cuts for all energies, species and models.

n Many timing data points for 
downward-going shower geometry. 

n Xstart is shallow enough and Xend is  
deep enough to observe longitudinal 
developments. 



Resolution Study by MC
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1. Generate artificial data calculated by MC simulations.
2. Reconstruct this simulated data in monocular analysis, and 

compare reconstructed results with true ones.
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Data Set and Analysis

2013/Jul2008/Jan

2008/Jan/01 ~ 2011/Sep/07    3.7 years 
BRM: 2399 hrs (duty: 7.4%)
 LR: 2054 hrs (duty: 6.3%) 
(cloud cut and dead time subtracted)

 1381 showers
(logE>18.0, BRM&LR)

Use identical 
reconstruction procedures 
and quality cuts in both 
observed and MC data.
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Data/MC Comparison
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The measured Xmax is consistent 
with proton dominance.

7.6. STUDY OF SYSTEMATIC UNCERTAINTY 143

energies estimated from MC simulations as shown in Fig. 6.1.2. The correction
factor is estimated as 7% at 1019.5 eV.

As shown in section 7.2 of Data/MC comparisons, the shapes of lateral den-
sity distributions are slightly difference for observed showers and MC simulated
showers based on the NKG function. Thus, we reconstruct the observed data
without lateral density distributions, and compare the reconstructed energies
without lateral density distributions with energies considering lateral density
distribution based on the NKG function. The contribution on the systematic
error on energy estimations is 3% with our reconstruction software.

As discussed in section 6.1.2 of accuracies on Xmax estimated from MC
simulations, there are systematic differences between thrown Xmax values and
reconstructed ones in the monocular analysis. The averaged systematic bias is
10 g/cm2 estimated from MC simulations shown in Fig. 6.6. Since the recon-
structed Xmax values are not corrected in the monocular analysis, hence we use
10 g/cm2 attributed to systematic uncertainty on Xmax.

7.6.6 Total Systematic Uncertainty

Table 7.2 shows the systematic uncertainties attributed to several sources.
The total systematic uncertainties on energies and Xmax are summarized in
this table. As the result, we conclude that the total systematic uncertainty on
energy and Xmax are 21% and 19 g/cm2, respectively. The energy systematic
error is almost same as the other experiments (AGASA: 18%, HiRes: 17%,
Auger: 22%).

item Energy Xmax

Fluorescence Yield 11% 5 g/cm2

Atmosphere 11% 12 g/cm2

Calibration 10% 5 g/cm2

Detector Geometry 4% 9 g/cm2

Reconstruction 10% 10 g/cm2

Total 21% 19 g/cm2

Table 7.2: The total systematic uncertainty of energy and Xmax.

7.6. STUDY OF SYSTEMATIC UNCERTAINTY 143

energies estimated from MC simulations as shown in Fig. 6.1.2. The correction
factor is estimated as 7% at 1019.5 eV.

As shown in section 7.2 of Data/MC comparisons, the shapes of lateral den-
sity distributions are slightly difference for observed showers and MC simulated
showers based on the NKG function. Thus, we reconstruct the observed data
without lateral density distributions, and compare the reconstructed energies
without lateral density distributions with energies considering lateral density
distribution based on the NKG function. The contribution on the systematic
error on energy estimations is 3% with our reconstruction software.

As discussed in section 6.1.2 of accuracies on Xmax estimated from MC
simulations, there are systematic differences between thrown Xmax values and
reconstructed ones in the monocular analysis. The averaged systematic bias is
10 g/cm2 estimated from MC simulations shown in Fig. 6.6. Since the recon-
structed Xmax values are not corrected in the monocular analysis, hence we use
10 g/cm2 attributed to systematic uncertainty on Xmax.

7.6.6 Total Systematic Uncertainty

Table 7.2 shows the systematic uncertainties attributed to several sources.
The total systematic uncertainties on energies and Xmax are summarized in
this table. As the result, we conclude that the total systematic uncertainty on
energy and Xmax are 21% and 19 g/cm2, respectively. The energy systematic
error is almost same as the other experiments (AGASA: 18%, HiRes: 17%,
Auger: 22%).

item Energy Xmax

Fluorescence Yield 11% 5 g/cm2

Atmosphere 11% 12 g/cm2

Calibration 10% 5 g/cm2

Detector Geometry 4% 9 g/cm2

Reconstruction 10% 10 g/cm2

Total 21% 19 g/cm2

Table 7.2: The total systematic uncertainty of energy and Xmax.



Xmax distributions (QGSJetII-03)
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TALE(Telescope Array Low Energy Extension)

E > 1016.5 eV
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Summary and Future Plans
We measured the mass composition to analyze data 
collected during 3.7 years by newly constructed 
fluorescence detector of TA in monocular mode.

Tight cuts are adopted to achieve reasonable resolution 
and smaller Xmax reconstruction bias.

The measured Xmax is consistent with proton dominance, and 
also in good agreement with Stereo or Hybrid measurements.
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Use updated hadron interaction models, 
such as QGSJetII-04 and EPOS-LHC.
Systematic uncertainty study for low 
energy showers


